2,586 research outputs found

    Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds

    Full text link
    We used transport and Raman scattering measurements to identify the insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41} as a weakly pinned, sliding density wave with non-linear conductivity and a giant dielectric response that persists to remarkably high temperatures

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure

    Resonant Raman Scattering in Antiferromagnets

    Full text link
    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-TcT_c materials. Recent experiments have shown a strong dependence of the Raman signal in B1gB_{1g} geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by one of us (A.Ch) and D. Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ωres(1)≈2Δ+3J\omega^{(1)}_{res} \approx 2\Delta + 3J and ωres(2)≈2Δ+8J\omega^{(2)}_{res} \approx 2\Delta + 8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ωres(1)\omega^{(1)}_{res} to a symmetric form around ωres(2)\omega^{(2)}_{res}. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest neighbor hopping term t′t^{\prime} and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2Sr_2CuO_2Cl_2 and YBa2Cu3O6.1YBa_2Cu_3O_{6.1} and R\"{u}bhausen et al. on PrBa2Cu3O7PrBa_2Cu_3O_7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    Electronic Raman Scattering in Nearly Antiferromagnetic Fermi Liquids

    Get PDF
    A theory of electronic Raman scattering in nearly antiferromagnetic Fermi liquids is constructed using the phenomenological electron-electron interaction introduced by Millis, Monien, and Pines. The role of "hot spots" and their resulting signatures in the channel dependent Raman spectra is highlighted, and different scaling regimes are addressed. The theory is compared to Raman spectra taken in the normal state of overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}, and it is shown that many features of the symmetry dependent spectra can be explained by the theory.Comment: 3 pages + 4 figures, SNS97 Conference Proceeding
    • …
    corecore